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A method is proposed for calculating isothermal flows in channels of complex 
configuration, for the example of a vortex furnace chamber. 

Current furnace technology is distinguished by great diversity of aerodynamic schemes: 
As well as the traditional opposed grouping of vortex or direct-furnace burners and the 
tangential grouping, other types employed are the furnaces designed by the I. I. Polzunov 
Central Scientific-Research Institute for the Planning and Design of Boilers and Turbines 
(CSIPDBT) and the Leningrad Polytechnic Institute, cyclone furnaces, multifaceted annular 
furnaces, and furnaces with plane-flame burners. This diversity of aerodynamic schemes 
is not by chance, since aerodynamics is one of the factors determining the combustion and 
heat-transfer processes in furnaces. Therefore, in developing new designs of boiler units, 
the study of gas-flow aerodynamics inside furnace chambers is of great importance. To 
date, this question has basically been approached by numerical modeling. However, the de- 
velopment of methods of computational hydrodynamics and progress in computer technology per- 
mits the use of mathematical methods of modeling the aerodynamic processes together with 
physical methods. The promise of this approach is indisputable, since a successful mathe- 
matical model may permit operative change in the boundary conditions and configuration of 
the design, and subsequently the consideration of heat and mass transfer in the boiler 
units, together with aerodynamics. 

However, mathematical modeling of furnace processes encounters large but not insuper- 
able difficulties associated with the complexity of the phenomena being modeled and the 
imperfection of the computer technology employed (inadequate speed and memory capacity). 
Flow in furnace chambers is spatially complex, and thus the problems to be solved are un- 
conditionally three-dimensional. Only certain forms of flow [I] may be described in a 
two-dimensional coordinate system, offering the possibility of including the model of tur- 
bulence and combustion in consideration. In solving three-dimensional problems, on the 
one hand, the range of problems considered must be restricted and, on the other, coarse 
grids must be used. 

In the present work, in constructing a numerical method of investigation, it is taken 
into account that the maximum velocities in the furnaces are no greater than 100 m/sec. At 
temperatures of around 1800 K, this corresponds to a Mach number M ~ 0.12. At such values 
of M, the liquid may be regarded as incompressible. 

In flame ignition of fuel and oxidizing agent, jets are introduced in the furnace vol- 
ume and, interacting with one another and with the boundary surfaces, mix well and form a 
single flow; this allows the flow to be regarded as isothermal, in the first approximation. 

Turbulent motion of the incompressible liquid may be described by the Reynolds equa- 
tions. If they are closed using the Boussinesq hypothesis and the assumption that the tur- 
bulent viscosity is constant and much larger than the molecular viscosity, these equations 
reduce to the Navier-Stokes equations. As well as the continuity equation, the following 
system is obtained here 
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The assumption of constant turbulent viscosity is fairly rough. However, taking account of 
the lack of information on turbulent viscosity for such flows, the three-dimensionality of 
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the problem, and the complexity of the algorithm when even simple models of turbulence are 
used, this assumption is adequate for the first stage of the investigation. The calcula- 
tions are performed in a wide range of Reef. The theoretical velocity fields best agree- 
ing with experiment are noted below. 

At the boundaries of the given region, conditions for the components of the velocity 
vector are specified; the pressure at an arbitrary point is assumed to be zero, and the 
pressure is determined accurately in the volume, except for some additive constant. 

It is convenient to write Eq. (i) in vectorial form in order to describe the algorithm 
for solution of the given problem 
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The economic difference scheme constructed in [2, 3] on the basis of the fractional- 
step method is used. The solution is sought by the establishment method, setting the 
steady Navier-Stokes equations in correspondence with their nonsteady analogs, and the 
additional term (i/Ap)(SP/3t) is introduced in the continuity equation 
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If A (s) is the difference matrix operator approximating the differential operator A with 
order s relative to the spatial step h, the difference analog of Eq. (3) may be the system 

(3) 

~n+ l __ fn 
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If Eq. (4) is to be linear, the operator A (s) must be taken at the n-th layer, here and 
below. For simplicity of notation, the superscript n is omitted. 

The values of the components of the vector fn+l at time t n+1 are found from their val- 
ues at time t n, i.e., fn+1 = fn + $n+1 Then it follows from Eq. (4) that 

(E + xA-I A<~) ~ = -- xA-'A(s)fL (5) 
where E is a unit matrix and 
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scheme is constructed for the resolution of the problem in Eq. (5) with respect to N frac- 
tional steps 

(E + "~A-IAlS))~"+t/N = ~n+(t-l)/N, l = I, ..,, N, 
(6) 

where ~n = --rA-ZA(s)fn. 

Eliminating the intermediate fractional steps, a relation is obtained between fn+: and 
fn 

N 
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S i n c e  f n + l  _ f n  ~ 0 on  e s t a b l i s h m e n t ,  t h e  s o l u t i o n  o f  Eq .  ( 6 )  t e n d s  t o  t h e  s o l u t i o n  h ( s ) f n + l =  
0. Thus, the solution of the difference equations approximating the system of differential 
equations in Eq. (i) may be obtained with an error determined by the capabilities of the 
computer. In each fractional step, the system in Eq. (6) is solved by scalar fitting. 

The choice of boundary conditions has a significant influence on the formation of the 
flow pattern in the calculation region. As shown by comparing the results of the calcula- 
tions with experimental data, the "adhesion" condition - Vlbou n = 0 - is natural for flow 
in channels of considerable length, where the friction at the wall has the determining in- 
fluence on the formation of the velocity profile. Howeveri in furnace chambers, the struc- 
ture of the flow is determined by pulses introduced by high-speed jets and the thickness of 
the boundary layer is small in comparison with the chamber dimensions. Most of the energy 
is consumed in rearrangement of the flow and only a little of it in frictional losses at 
the walls. The turbulent viscosity, which changes little in the flow core, is sharply re- 
duced close to the wall. Taking account of the need to apply a rough calculation grid, it 
may be concluded in this case that it is expedient to introduce "slipping" boundary condi- 
tions at the boundary surfaces, that is, 

0 a~ OV, I an = O. 

Since it is of interest to calculate three-dimensional flows, andthe surface u may be ori- 
ented arbitrarily in space, the realization of "slipping" conditions is now considered in 
more detail. The first condition gives the equation 
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The second is equivalent to the system 
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is a differential operator. When N = 3, this system of equations re- 
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duces to the simpler form 
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Thus, four scalar equations for the three unknowns (u l, u 2, u 3) are obtained from the 
boundary conditions. However, the components of the unit vector n are related as: nz 2 + 
n2 2 + n3 2 = i, and the determinant of Eq. (i0) is zero, i.e., only two of the three equa- 
tions may be used. Finally, it follows from Eqs. (8) and (i0) that at the boundary 
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Fig. i. Calculation grid: a) fragment of plane hybrid grid; 
b) comparison of geometry: I) contours of mathematical model; 
2) contours of physical model. 
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The system in Eq. (ii) is simplified if one of the coordinate axes, for example, x3, is di- 
rected parallel to the boundary surface. Then n 3 = 0 and gV = 0 

[nl. 01 v [ulj. 
0 0 nx~ u3 

In order to organize the iterative process, as in the case of Eq. (3), this system is set in 
correspondence with its nonsteady analog 3V/at + ~V = 0 and the operator ~ is written in 
the form: = ~l + ~2, where 
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2 2 

In the odd (n + l)-th time layer, the soluton of the following system is sought 

V " + l - V n  ( 1 2 a )  

T 

and in the even (n + 2)-th step 

Vn+Z __ Vn+x 
+ ~,V~+ I + Q~V n+z = 0. (12b) 

T 

In each of Eqs. (12a) and (12b), a scheme of resolution with respect to the directions simi- 
lar to that in Eq. (6) is employed. 

For transition from differential equations to finite-difference equations, the calcula- 
tion region is covered by a hybrid grid. The coordinates xl, x2, x s are denoted by x, y, z, 
and the projections of the velocity vector ul, u2, u s by u, v, w, respectively. The cell 
structure of this grid for the plane case is shown in Fig. la. The pressure is determined 
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Fig. 2. Velocity fields in vortical 
furnace calculated in FOS, Reef = 500. 

at the center of the cellPi,j, relative to which the continuityequation is approximated. The 
projections of the momentumequation on the axes x andy is approximted bypoints u and v, respec- 
tively. The boundaries of the region parallel to the coordinate planes pass through the horizontal 

and vertical boundaries of the cell and the sloping boundaries through the velocity points, 
passing the points with the pressure. The partial derivatives in the continuity equation 
and the diffusional terms and pressure gradient are approximated on such a grid with second- 
order accuracy relative to the spatial step. 

For the convective terms, approximations of two forms are used: first- and second- 
order accuracy. The first-order approximation is based on the well-known scheme with a 
donor cell [4] and the second-order approximation on a scheme with central differences 
[3]. 

The above method is used to calculate the isothermal aerodynamics of a vortex furnace 
of a small-scale E-500 boiler at the Novosibirsk heat and electric power plant TETs-3. This 
furnace is a complex object from the viewpoint of mathematical modeling. A vortex with a 
horizontal axis is created by two high-speed jets, which intersect. Therefore, only a three- 
dimensional model can be used for the calculations. Whereas a cylindrical coordinate system 
is preferable for the vortex, the chamber boundaries are best described in a Cartesian sys- 
tem. The flow is characterized by very large velocity-field gradients. 

Part of the furnace volume enclosed between the axial planes of the furnace and the 
burner is isolated for the calculation (Fig. ib). The x axis of the Cartesian coordinate 
system is perpendicular to the front from the burner to the rear wall, the y axis vertically 
upward, and the z axis parallel to the front of the boiler. The corresponding dimensions 
along these directions are: B = i, H = 1.33, S = 0.3; and the number of grid points is: 
N1 x N2 x N3 = 15 x 20 x 9. 

Thus, Ax = Ay = 1/15 and Az = 1/30. The depth of the furnace chamber is taken as the 
normalizing dimension and the velocity at the burner outlet as the normalizing velocity. 
The calculation region includes half the burner. Its area is 8 cells, in which the projec- 
tions of the input velocity are specified: Uin = 1.0; Vin = 0.267 (the angle of slope of 
the burner is 15~ The ratio of the total area of the inputs to the cross-sectional area 
of the combustion chamber Zf/F 0 = 0.058. The "slipping" condition is imposed at all the 
surfaces parallel to the z axis and the symmetry condition at all the normal planes. The 
output diffusor connecting the combustion and precombustion chambers is replaced by a 
straight channel, at the free boundary of which "soft" [4] boundary conditions are speci- 
fied. 

Calculations are performed in a first-order scheme (FOS) with Reef = 30, i00, 200, 
500, i000 and in a second-order scheme (SOS) with Reef = 200 and 500. When using FOS, 
Reef has considerable influence on the character of the flow in the range 30-100. When 
i00 < Reef < 500, this influence is markedly reduced; it vanishes when Reef > 500. When 
Reef = 30, the flow leaving the burner is twisted and, passing the combustion chamber, it 
is directed toward the contraction. There is practically no vortical flow in the chamber. 
With increase in Reef, the swirling in the chamber increases: On the one hand, the jet 
becomes longer-range; on the other, it ejects a larger quantity of gas from the furnace 
volume. However, even whenReef = 500, the multiplicity of circulation K, equal to the 
ratio of the gas flow rate passing through the radial cross section to the flow rate at 
the chamber input, isno greater than i. The velocity field for this case in the burner 
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Fig. 3. Comparison of theoretical and experimental velocity 
fields: a) FOS calculation, Reef = 500; b) isothermal blow- 
ing in model. 
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Fig. 4. Distribution of dimensionless stat- 
ic pressure along horizontal diameter: a) 
in burner cross section, k = i; b) in axial 
cross section of furnace, k = 9; the curves 
correspond to calculation and the points to 
experiment. 

cross section (k = i) and in the axial cross section of the furnace is shown in Fig. 2. 
They are distinguished by strong shift toward the rear wall of the center of the vortex 
when k = i, small velocity-field gradients, and small velocity-retention coefficient c [5]. 
At the rear wall, ~ = 0.35. It is noteworthy that the flow leaving the burner reaches the 
opposite wall and is partially deflected to the lower part of the furnace, partially turned 
in the horizontal plane in the opposite direction. Therefore, in the axial cross section 
(k = 9), there is no recirculation of the gas, and the whole flow from the lower part of 
the chamber is directed to the output window. In conclusion, it-may be noted that the 
velocity fields which may be obtained using FOS correspond to more viscous flow than that 
observed in physical models. This is explained by the presence of schematic viscosity in 
FOS [6] or, in other words, insufficient accuracy of the approximation of convective terms. 
The schematic viscosity accompanying FOS corresponds to Re = i00 in the present problem. 
Correspondingly, the increase in Reef by an order of magnitude - from i00 to i000 - does 
not lead to significant change in the velocity fields calculated in FOS. Hence, calculation 
of the aerodynamics of such furnaces must be based on schemes of higher order. 

A central-difference approximation of the convective terms is used here to obtain the 
SOS. The SOS calculations assume Reef = 200 and 500. Note that even in this range Reef is 
one of the factors determining the flow pattern. It is an empirical constant which offers 
the possibility of establishing the relation between calculation and experiment. The re- 
sults of SOS calculations for Reef = 500 are shown in Fig. 3a. The level of tangential 
velocity here is 2.5 times greater than when using FOS. Vortical flow is seen over the 
whole volume; turning of the flow in the horizontal plane of the cross section is not seen. 
The multiplicity of the circulation is K = 2.5. 

In Fig. 3b, for comparison, the results of isothermal injection of the vortical furnace 
of the E-500 boiler at the Novosibirsk heat and electrical power station TETs-3 are shown, 
and in Fig. 4 the distribution of the dimensionless static pressure (normalized with respect 
to pUin) along the chamber diameter is shown. The theoretical and experimental (obtained 
by V. F. Litvinenko at the Scientific Design Department, I. i. Polzunov Central Scientific- 
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Research Institute for the Planning and Design of Boilers and Turbines) fields are in good 
agreement. Active vortical motion is observed in both the mathematical and physical models, 
with a maximum tangential velocity at the rear wall of ~0.65 Uin. The identical position of 
the center of the vortex is noteworthy: In the burner cross section, it coincides with the 
geometric center of the chamber; between the burners it is shifted by 0.i B to the right. 
The flow output in both cases is between the burners, above which downward flow is 
seen. In Fig. 3a, rarrangement of the flow characteristic of vortical chambers is shown. 
Whereas at the rear wall a narrower velocity profile is seen i~n the burner cross section and 
a somewhat trucated profile in the axial cross section of the chamber, the tangential veloc- 
ity gradient between the burners is higher than thatbelow them in the hearth. 

The drag coefficient of the combustion chamber, equal to the ratio of the difference in 
mean total pressure head at the chamber inlet and the outlet from the neck to the dynamic 
pressure head in the burner, is determined from the calculated velocity fields and pressures. 
It is 0.856. Data on the drag are in satisfactory agreement with the experimental results 
in [5], where the relative loss in total pressure head from the aperture to the output cross 
section of the cooling chamber is around i.I. The explanation for thegreater experimental 
than theoretical values may be that the energy losses in the cooling chamber do not appear 
in the theoretical values, since the cooling chamber is not included in the mathematical 
model. 

Thus, the proposed method allows data to be obtained by means of calculation on the 
aerodynamics of three-dimensional flows, the flow structure of which is determined by the 
momenta of the incoming jets. 

NOTATION 

xz, x2, x3 or x, y, z, Cartesian coordinates; ul, u2, u 3 or u, v, w, the corresponding 
components of the velocity vector; P, pressure normalized with respect to pU02; Reef , Rey- 
nolds number calculated from the effective viscosity; A, differential matrix operator; L, 
differential operator taking account of convective and viscous terms; Ap, weighting factor 
for 8P/at; h, ~, spatial and time steps; s, order of approximation; $, correction vector; 
n, unit normal to surface with coordinates nl, n2, n~; Vn, VT, components of velocity vec- 
tor u normal and tangential to surface y; ~, differential matrix operator of boundary con- 
ditions; i, j, k, subscripts corresponding to coordinates x, y, z; K, multiplicity of circu- 
lation; E, velocity retention coefficient. 
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